A survey

Seoul National University Artificial Intelligence Institute Biolntelligence Lab
Mentor: Junseok Park

Faculty Advisor: Dr. Byung-tak Zhang

Sungwook Min




» Result and Analysis
Atari
Pong Game

e Method

« Result and Analysis

Conclusion
Extension
References




action

A

* Receives scalar reward R;
Environment:
* Receives action A,

 Qutputs updated observation O; . ;

 Qutputs updated scalar reward R, ;

Figure 1: lllustration of RL process [1]




 Policy: agent’s behavior function

 Value function: how good each state is, is a prediction of future reward
U (S) = E[Res1 + YRes2 + ¥ Reyg + -+ |S; = 5]

* Model: agent’s representation of the environment, predicts what the

environment will do next

- P predicts the next state
Pa’ss = P[S¢y1 =5'[St = 5,4 = a]
- R predicts the next reward
R¢ = E[Rt41|S: = s,Ar = a]
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Q-learning employs the Q-value function which calculates the value of the action performed in (state
S and action A.

Qr(s,a) = Ex[Ryyq + YRpy2 + V*Reyz + - |S; = 5,4 = a]

Here the function uses a discount factor y between 0-1 which accounts for how
significant the current reward is compared to the future reward.
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Figure 2: Demonstration of replay buffer [3]

Fixed Q-targets

Aw= a( +ymaxQ(s’,a’;w™) — Q(s,a; w)V,, (s, a; w)
Equation above shows for every n steps, w~ < w, which improves stability and
prevents w from increasing exponentially.
With fixed Q-targets and experience relay, DQN improves stability.




Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x } and preprocessed sequenced ¢; = ¢(s)
fort =1,7 do
With probability e select a random action a;
otherwise select a; = max, Q" (&(s¢). a; 0)
Execute action a,; in emulator and observe reward r; and image x4
Set ¢4 1 = S¢, ay, x4y and preprocess ¢y ;= O(S¢41)
Store transition (¢, ag, e, 1) in D
Sample random minibatch of transitions (¢,. a;, 7, ¢j4+1) from D
Setuy, — d T for terminal ¢
LY = rj + 7y max, Q(¢j41.a’;0) for non-terminal ¢

Perform a gradient descent step on (y; — Q(¢;. a;; 9))2 according to equation
end for
end for

Figure 3: DQN Pseudocode [4]




Classic Control

Mountain Car

Cart Pole Continuous

Mountain Car Pendulum

Figure 4: Gymnasium Classic Control




Since the goal is to keep the pole upright for as long as possible, a
reward of +1 for every step taken, including the termination step, is
allotted. The threshold for rewards is 500 for v1 and 200 for vO0.

The episode ends if any one of the following occurs:

« Termination: Pole Angle is greater than +12°

 Termination: Cart Position is greater than +2.4 (center of the cart
reaches the edge of the display)

 Truncation: Episode length is greater than 500 (200 for v0)

L

Figure 5: Gymnasium CartPole



Method

Hyperparameters: DQN Agent — Learn Function
* 950 episodes e

mory) < BATCH SIZE:#if no of episode stored in memory < batch size skip learning

exploration rate: (0.05, 0.9)
 set upper-epsilon to 0.9 to maximize exploration at

early stages

« epsilon_decay = 200

« gamma=0.8
 discount rate

 learning_rate = 0.001

» batch_size = 64

memory, BATCH SIZE)
s, next states = zip(*batch)

Figure 6: DQN Learn function

*all other rewards, presets, and environmental factors
were kept same as the original ‘CartPole-v0’ environment
in gymnasium



Figure 7: Cartpole demonstration
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Figure 8: Cartpole First Sequence Performance Figure 9: Cartpole Third Sequence Performance




Cart Position

v 41‘\'(’3’/“\\ _ shows that the CartPole game can be excelled
!,’,," .‘\y/ 0 througl_1 the_ use of replay buffers and

}s"‘( ;{ approximation of Q values.
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Figure 10: CartPole DON Agent Network




Atari

The Atari environment is based off the Atari 2600 arcade games.
 High dimensional visual-input (210 x 160 RGB video at 60hz)
 Diverse games and objectives — diverse rewards, actions

o Difficult for human players

Perfect for RL application

Figure 11: Atari 2600 games



passes your paddle.

Figure 12: Atari Pong game



gamma = 0.8
 discount rate
learning_rate = 0.001
batch_size = 32
epsilon-greedy = 0.1

*all other rewards, presets, and environmental
factors were kept same as the original ‘Pong’
environment in Atari




Figure 13: Pong Episode 0 Figure 14: Pong Episode 530
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Figure 15: Pong Performance
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sudden decay due to exploration rate and epsilon-

530 Figure 16: Pong DQN Agent Network






0 summarize, DQN consists o0
Q-learning: a model-free algorithm used for finding optimal policy given a finite Markov Decision
Process (MDP)
Deep neural networks: used to calculate Q-function
Experience relay: stores and sample experiences (state s, action a, reward r, next state s’)
Target network: a fixed network (for a certain number of iterations) that improves stabilit

Epsilon-greedy exploration: agent chooses the best-known action with high probabili




T
L(0) = E[(Q(s,a; ) — (r + ymax,Q(s',a’; 67)))*]

4. Steps 1-3 are repeated to improve the Q-function estimation




makes it highly effective for environments such as Atari, etc.
» exploration and exploitation
« the epsilon-greedy policy used for DQN ensures that the agent explores a
variety of different actions and consequential rewards throughout the process,
resulting in an optimal policy
 approximation of g-values

 ensures that DQN performs consequential action based on highest reward
value
 nonlinear function approximation
 ensures that DQN captures any ongoing patterns or relationships




Markov Decision Process (POMDP) testing, where the game’s initial stages only provides the agent with
limited information. In order to ‘win’ the game, the agent has to explore and remember the layout as it
navigates the game.

As POMDP and DQN employ different approaches, it would be wise to employ a Partially Observabl
Monte Carlo Planning (POMCP) approach, which is an algorithm used for searching and planni

state spaces with uncertainty and extend the algorithm with neural network componen
approximation.




Brunskill, E. (2023, July). CNNs and Deep Q Learning. 4 Reinforcement Learning.
Stanford, CA; Stanford University Computer Science Department.

4. Mnih, Volodymyr & Kavukcuoglu, Koray & Silver, David & Graves, Alex & Antonoglou, loannis &
Wierstra, Daan & Riedmiller, Martin. (2013). Playing Atari with Deep Reinforcement Learning.




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

